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Abstract: Metallic dampers can enhance structural performance by reducing seismically induced lateral displacements, and by reducing
inelastic behavior of beams and columns. Limiting story drift also indirectly allows us to mitigate damage of nonstructural components
that are sensitive to lateral deformations. However, many nonstructural elements and components are vulnerable to excessive accelera-
tions. Therefore, in order to protect these components, floor accelerations in buildings should be kept below certain limits. In this
perspective, this paper investigates the seismic performance of single-degree-of-freedom �SDOF� systems with metallic and viscous
dampers installed in parallel, to determine the effectiveness or appropriateness of using metallic dampers to mitigate lateral displacements,
simultaneously with viscous dampers to reduce acceleration demands, knowing that their behavior is fundamentally different �i.e., metallic
dampers are displacement dependent, whereas velocity dampers are velocity dependent�. The effect of a combination of these damping
systems is, therefore, studied for SDOF structures as a contribution to the state-of-the-art of seismic protection of nonstructural compo-
nents. Parametric analyses investigate the effectiveness of adding various levels of viscous damping on the equivalent hysteretic damping
and on the spectral floor acceleration for short, intermediate, and long period structures. Argand diagrams are used to explain why in some
instances it is observed that adding viscous dampers to strongly inelastic systems can result in increases in floor acceleration �rather than
the intended decreases�. Results from this study are also applicable to buildings that have been retrofitted with viscous dampers and whose
original frame still behaves inelastically after the retrofit.
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Introduction

In the 1964 Alaska and 1971 San Fernando earthquakes, exten-
sive damage of nonstructural components was observed, which
resulted in substantial economic losses, serious casualties, and
impediments to the buildings operation, even in buildings that
suffered limited or no structural damage �Lagorio 1990�. Conse-
quently, since the 1970s, many research projects have focused on
providing guidance to design, retrofit, and improve the seismic
performance of nonstructural elements. An inventory and sum-
mary of past research, as well as comparisons of existing regula-
tions to seismically design nonstructural components, can be
found in Filiatrault et al. �2002�, where, as part of the study,
recommendations are made for the development of a comprehen-
sive research plan to investigate the seismic performance of non-
structural building components.

Metallic dampers �hysteretic dampers�, especially designed to
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behave as passive energy dissipation �PED� devices, have been
thoroughly studied in the past to enhance structural performance
by reducing seismically induced structural damage. In this sense,
metallic dampers have been implemented primarily in flexible
framing systems �e.g., moment frames� to reduce interstory drifts,
and eliminate �or at least reduce� inelastic behavior in beams and
columns �Bruneau et al. 1998�. Limiting story drift allows us to
mitigate damage of nonstructural components that are sensitive to
lateral deformations �i.e., elements that are generally attached to
consecutive floors�. However, many nonstructural elements and
equipment are attached to a single floor, and can lose their func-
tionality due to excessive sliding, overturning, or damage to their
internal components due to severe floor vibrations. In order to
protect these components, floor acceleration and, in some cases,
floor velocity �e.g., in the case of toppling of furniture� should be
kept under certain limits.

Although metallic dampers have been shown to be effective to
reduce interstory drifts, some studies have found that, in many
cases, the use of metallic dampers may cause increases in floor
accelerations due to the added stiffness, which may negatively
affect seismic behavior of nonstructural components �e.g., Iwata
2004; Mayes et al. 2004; Tong et al. 2003; to name a few�. This
suggests that it may be desirable to use metallic dampers to miti-
gate lateral displacements, along with viscous dampers to reduce
acceleration demands. In this perspective, this paper investigates
the seismic performance of single-degree-of-freedom �SDOF�
systems with metallic and viscous dampers installed in parallel,
knowing that their behavior is fundamentally different �i.e., me-
tallic dampers are displacement dependent, whereas velocity
dampers are velocity dependent�. The effect of a combination of

these damping systems is, therefore, studied for SDOF structures
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as a contribution to the state-of-the-art of the seismic protection
of nonstructural components.

Parametric analyses of hysteretic damping and spectral accel-
eration are presented for short, intermediate, and long period
structures with different levels of viscous damping. Response in
the frequency domain is also shown as graphics of inertial, vis-
cous damper, and hysteretic forces represented in the complex
plane. These results are used to provide a preliminary assessment
of the effectiveness of using metallic and viscous dampers in
parallel to reduce floor accelerations.

Viscous Damping

Viscous fluid dampers have been widely studied in the past,
and significant efforts have been directed to implement these
devices in structural systems �Soong and Dargush 1997�. Viscous
fluid dampers generally work on the principle of energy dis-
sipation of incompressible fluids forced to flow through orifices
�Constantinou and Symans 1992�. The viscous damping force, Fd,
is proportional to the velocity of motion, u̇, according the follow-
ing expression:

Fd = c�u̇��sgn�u̇� �1�

where � takes values between 0.3 and 2.0; and c�damping coef-
ficient. According to Hanson and Soong �2001�, small values of �
�i.e., ��0.5� are effective to mitigate high-velocity shocks, such
as isolation of military hardware. On the other hand, in applica-
tions of structural engineering, �=1 is usual desirable to design
systems against wind or earthquake loads �Hanson and Soong
2001�, and therefore it is the value used in this study.

Equivalent Viscous Damping „Hysteretic Damping…

In many structural analyses such as the nonlinear static procedure
FEMA �FEMA 2000�, the dynamic characteristics of a structure
having metallic dampers are transformed to an effective period,
Teff, which is obtained from the secant or effective stiffness, Keff,
of the combined system �i.e., bare frame plus dampers� to the
point of maximum displacement as illustrated in Fig. 1�a�, the
inherent viscous damping, �v, and an equivalent viscous damping
�hysteretic damping� for the metallic dampers, �h, also determined
from specific hysteresis loops at the point of maximum displace-
ment. Generally, the hysteretic damping for a metallic damper is

Fig. 1. General pushover curve: �a� effective stiffness and period;
�b� bare frame and metallic damper contribution to total base shear
capacity
obtained by setting the area within a hysteresis loop equal to the
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area within a viscous damper cycle, provided that the area con-
tained within one cycle of motion is the energy dissipated per
cycle �Hanson and Soong 2001�.

Consequently, the hysteretic damping, �h, may be determined
from the following expression, adapted from Ramirez et al.
�2001�:

�h =
2qh�1 − 1/� f� + 2�Vyd/Vyf��1 − 1/��

��1 + Vyd/Vyf�
� 0 �2�

where qh�quality factor of the loop, taken as 1.0 for bilinear
systems; Vyf and Vyd�contributions from the bare frame and from
the metallic damper to the base shear capacity, respectively; �
and � f�global and frame ductility determined as umax/�ya and
umax/�yf, respectively �see Fig. 1�b��, where umax�system maxi-
mum lateral displacement; and �ya and �yf�yield displacement
of the metallic dampers, and the yield displacement of the frame,
respectively.

The set of parameters used in this study are obtained from
Fig. 1�b�: the strain-hardening ratio, 	, the maximum displace-
ment ductility, �max, and the strength ratio, 
. The strain-
hardening ratio, 	�relation between the frame stiffness, Kf, and
the total initial stiffness, K1 which can be calculated as

	 =
1

1 +
Ka

Kf

�3�

where Ka�stiffness of the added damping system; and
	�dimensionless parameter less than one. The maximum dis-
placement ductility is the maximum displacement ductility that
the structure experiences before the frame undergoes inelastic de-
formations. This parameter can be written as

�max =
�yf

�ya
�4�

with �max being greater than one. The strength ratio, 
, is deter-
mined as the relation between the yield strength and the peak
effective ground force applied during the motion, defined as


 =
Vy

mügmax

�5�

where m�mass; Vy�yield strength of the system; and ügmax

�peak ground acceleration. Substituting qh=1.0; Vyd=Vy�1−	�;
and Vyf =Vy 	�max �which can be determined from Fig. 1�b�� into
Eq. �2�, gives

�h = � 2

�
�� �1 − 1/� f� +

�1 − 	�
	�max

�1 − 1/��

1 +
�1 − 	�
	�max

� � 0 �6�

which expression used in this study. Note that for ��0 �and
therefore, � f �0�, the system remains elastic, which translates
into no dissipation of energy through hysteretic behavior and,
therefore, no hysteretic damping is developed �i.e., �h=0�.

Parametric Analysis of Hysteretic Damping

A parametric study was conducted to analyze how the hysteretic
damping, �h, is affected by increasing the viscous damping, ��v,
in SDOF systems with metallic dampers. A design response spec-

trum was constructed based on the National Earthquake Hazard
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Reduction Program Recommended Provisions FEMA 450
�FEMA 2003� for Sherman Oaks, Calif., and site soil-type class
B. This site was chosen because it corresponds to the location of
a demonstration hospital used by the Multidisciplinary Center
for Earthquake Engineering Research �MCEER� in some of
its projects. Accordingly, the design spectral accelerations for
this site are SDS=1.3 g, and SDl=0.58 g. Using the target accel-
eration spectra compatible time histories �TARSCTHS� code, by
Papageorgiou et al. �1999�, three spectra-compatible synthetic

Fig. 2. Hysteretic damping, �h, v
ground motions were generated to match the FEMA 450 target

1436 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2
design spectrum. Nonlinear time history analyses were conducted
using the Structural Analysis Program �SAP� 2000 �Computers
and Structures Inc. 2000�. Analyses were performed for the fol-
lowing parameters: 	=0.25, 0.50; �max=2.5, 5.0; and 
=0.2, 0.4,
0.6, 1.0. Analyses were also conducted for values of 	=0.05 and
�max=1.67, 10 �Vargas and Bruneau 2006�, but these other cases
are not included here due to space constraints. Short, intermedi-
ate, and long period structures �T=0.25, 0.50, and 1.50 s, respec-
tively� were then analyzed for increases in viscous damping, ��v,

ncrease in viscous damping, ��v
ersus i
of 0, 5, 15, and 25% from a base value of 5%. Hysteretic damping
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was determined using Eq. �6�, for a given set of parameters, and
the values of global ductility, �, and frame ductility, � f, obtained
from the system response.

Fig. 2 shows how the hysteretic damping, �h, decreases with
increases in viscous damping, ��v, for system periods of 0.25,
0.50, and 1.50 s, respectively. This is because the hysteretic
damping is proportional to the ductility demand, which decreases
with increases in viscous damping �see Eq. �6��. Since hysteretic
damping is proportional to ductility demand, all the observed
relationships between ductility demand and key parameters

Fig. 3. Ratio of hysteretic damping with respect to original h
�i.e., 	, �max, 
, and T� can help to explain how hysteretic
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damping relates to the same key parameters. For instance, in
Vargas and Bruneau �2006� it was found that increases in both 	
and �max result in decreases in the ductility demand for systems
without viscous dampers �shown in Fig. 2 at ��v=0�, which lead
to a significant reduction in the hysteretic damping. Vargas and
Bruneau �2006� also observed that the ductility demand reduces
with increases in 
 and T, which again result in decreases in the
hysteretic damping. Note that the largest values of hysteretic
damping were obtained for systems having small values of
	 ,�max,
, and T; whereas, the smallest values of hysteretic

tic damping, �h /�h0, versus increase in viscous damping, ��v
ystere
damping were obtained for large values of these parameters. For
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example, in a short period system �T=0.25 s� with 	=0.25,
�max=2.5, and 
=0.4, the hysteretic damping reduces from 58 to
37% when viscous damping is increased by 25%. On the other
hand, in a long period system �T=1.50 s� with 	=0.50, �max=5,
and 
=0.6, the hysteretic damping reduces from 1 to 0%
when viscous damping is increased by 5%, as the system becomes
elastic and remains elastic even if viscous damping is further
increased.

In Fig. 3, the ratio of the hysteretic damping with respect to

Fig. 4. Ratio of total damping with respect to origina
the hysteretic damping of the original system, �h /�h0, is plotted
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versus the increase in viscous damping, ��v. In this study, a ref-
erence system with viscous damping of 5%, along with its corre-
sponding hysteretic damping, �h0, is called the “original system.”
Fig. 3 show how “fast” the hysteretic damping is reduced by
increases in the viscous damping due to decreases in the ductility
demand �Eq. �6��. Note that in long period systems the hysteretic
damping reduces “faster” to the level of elastic response �i.e.,
�h=0� than in short period structures. This is because the ductility
demand has smaller values for long period original systems, and

ping, �t /�t0, versus increase in viscous damping, ��v
l dam
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therefore, small increases in viscous damping can make the struc-
ture respond elastically �see Fig. 2�.

Furthermore, in Fig. 4 the ratio of total damping with respect
the total damping of the original system, �t /�to, is plotted versus
the increase in viscous damping, ��v. Total damping is deter-
mined summing the contributions from viscous and hysteretic
damping, using the following expressions

Fig. 5. Ratio of floor spectral acceleration with respect to original fl
�to = �v0 + �h0 = 0.05 + �h0 �7�

JOURNAL
�t = �v + �h = 0.05 + ��v + �h �8�

Because hysteretic damping decreases nonlinearly with increases
in viscous damping, the total damping, �t, calculated using
Eq. �8�, may result in a gain or loss of equivalent damping,
depending on the relative values of ��h and ��v. In Fig. 4, a
value of �t /�to�1.0 corresponds to a gain of total damping
�i.e., ��v� ���h��. Note also that for short and intermediate period

ectral acceleration, Sa /Sa0, versus increase in viscous damping, ��v
oor sp
systems having 	=0.25 and �max=2.5, increases in viscous
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damping tend to be compensated for by decreases in hysteretic
damping �i.e., ��v����h��, and therefore, no significant gain of
total damping is appreciated. On the other hand, in long period
structures, significant gains of total damping are consistently ob-
served �i.e., ��v� ���h��, since elastic behavior of the system is
“quickly” achieved by increases in viscous damping �i.e., �h=0�.
For example, in a short period system �T=0.25 s� with 	=0.25,
�max=2.5, and 
=0.4, the total damping increases by a factor of
1.06 when viscous damping is increased by 25%. On the other

Fig. 6. Ratio of spectral acceleration with respect to origi
hand, in a long period system �T=1.50 s� with 	=0.50, �max=5,
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and 
=0.6, the total damping increases by a factor of 4.76 when
viscous damping is increased by 25%.

Parametric Analysis of Spectral Acceleration

A parametric study was conducted to analyze how floor accelera-
tions are affected by increases in viscous damping in SDOF
systems with metallic dampers, using the set of synthetic earth-

or spectral acceleration, Sa /Sa0, versus global ductility, �
nal flo
quakes and parameters established for this study.
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In Fig. 5, response was plotted as a ratio of floor spectral
acceleration, Sa, with respect to the floor spectral acceleration of
the original system, Sa0, for systems with periods of 0.25, 0.50,
and 1.50 s, respectively. It may be noted that for short and
intermediate period systems, the spectral acceleration increases
with viscous damping, except for large values of 	 and �max

�i.e., 	=0.5 and �max=5� where a reduction in spectral accelera-
tion may be seen for values of 
�0.4. For example, in a short
period system �T=0.25 s� with 	=0.25, �max=2.5, and 
=0.4,
the spectral acceleration increases by a factor of 1.29 when vis-
cous damping is increased by 25%. However, in a short period
system �T=0.25 s� with 	=0.50, �max=5, and 
=0.6, the spectral
acceleration is reduced by 28% when viscous damping is in-
creased by 25%.

On the other hand, for long period structures, the spectral ac-
celeration generally decreases with increases in the viscous damp-
ing, except for small 
 values �i.e., 
=0.2�. These results agree
with the fact that, for long period systems, the total damping
substantially increases with viscous damping, since the reduction
in hysteretic damping is insignificant �i.e., ��h�0, and
��v� ���h��. For example, in a long period system �T=1.50 s�
with 	=0.25, �max=2.5, and 
=0.4, the spectral acceleration re-

Fig. 7. Normalized inertial and hystere
duces by 19% when viscous damping is increased by 25%. How-
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ever, in a long period system �T=1.50 s� with 	=0.50, �max=5,
and 
=0.2, the spectral acceleration slightly increases by 9%
when viscous damping is increased by 25%.

Fig. 6 shows the relationship between Sa /Sa0 and global duc-
tility, �, recalling that both are affected by increases in viscous
damping �i.e., the highest value of � in every curve corresponds
to ��v=0, and the lowest one corresponds to ��v=25%�. Note
that original systems that respond with a ductility approximately
equal to two �i.e., ��2 for ��v=0�, are more likely to have a
reduction in acceleration demands by increases in viscous damp-
ing. This is because systems that have small ductility demands
can be changed into systems that behave elastically by adding
more viscous damping. In other words, adding viscous damping is
effective in reducing accelerations and displacements response of
systems that behave elastically, or that can be modified such as to
behave elastically �Chopra 2001�. For example, in a long period
system �T=1.50 s� with 	=0.50, �max=5, and 
=0.4, the global
ductility, �, reduces from 1.51 to 0.68, and the spectral accelera-
tion is reduced by 29% when viscous damping is increased by
25%. Subsequent sections are devoted to further investigate the
relationship between viscous damping and acceleration response

ps for 5 and 30% of viscous damping
tic loo
of elastic and inelastic systems.
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Hysteretic Response

As previously mentioned, the main purpose of this paper is to
investigate whether using viscous fluid dampers in parallel with
metallic dampers can simultaneously reduce lateral displacements
and floor accelerations. Although lateral displacement always de-
creases when using metallic, viscous, or both kind of dampers
acting together, it was found �in the previous section� that floor
acceleration increases in most of the cases considered, even for
systems designed with large viscous damping. This section fo-
cuses on studying the hysteretic response of short, intermediate,
and long period systems, using the lowest and highest values of 

from previous analyses �i.e., 
=0.2 and 
=1.0�, along with sev-
eral levels of viscous damping �i.e., 5, 10, 20, and 30%�, to un-
derstand the reason for these observed increases in acceleration.

Using d’Alembert’s principle, it is possible to express the
equation of motion of a SDOF system as an equation of dynamic
equilibrium �Clough and Penzien 1993�. Therefore, for a SDOF
subjected to ground excitation, the equation of motion may be
written as

Fi + Fd + Fs = 0 �9�

where Fi is the inertial force, calculated as

Fi = m�üg + ü� �10�

where üg and ü�ground acceleration, and the relative floor accel-
eration, respectively; Fd�viscous damper force calculated using
Eq. �1�; and Fs�sum of the metallic damper force and the struc-
tural frame force, called here the hysteretic force, determined ac-
cording to the following expression

Fs = K1u , u � �ya

Fs = Vy + 	K1�u − �ya� , �ya � u � �yf

Fs = Vp, �yf � u

�11�

where all variables are defined in Fig. 1. Note that for undamped
systems �i.e., Fd=0�, the inertial and hysteretic forces must be
equal and opposite to satisfy the dynamic equilibrium of Eq. �9�.
In damped systems, increases in viscous damping �i.e., increases
in the damping ratio� result in decreases in the lateral displace-
ment, u, and therefore, decreases in the hysteretic force, Fs,
according to Eq. �11� �assuming that the system is designed such
that u��yf, which is required to prevent any inelastic behavior of
the frame�. Consequently, acceleration demand, ü, may increase
�or decrease� to satisfy dynamic equilibrium. The resultant in-
crease or decrease in the inertial force depends on the increase
in the Fd value relative to the decrease in the value of Fs. For
instance, if �Fd� ��Fs� then �ü�0 �i.e., acceleration increases�,
and if �Fd� ��Fs� then �ü�0 �i.e., acceleration decreases�.

Fig. 7 shows some examples of the superposed hysteresis
loops for the inertial force and hysteretic force normalized with
respect to the yield point �Vy ,�ya�. The difference between the
curves is equal to the viscous damper force, Fd. Note that when
the maximum displacement is reached �i.e., u̇=0� the values of
both curves coincide �i.e., �Fi � = �Fs��. The maximum difference
between the curves is obtained when u=0, since the hysteretic
force has its minimum value at this point. For elastic systems �i.e.,
u��ya�, when u=0,Fs=0, the inertial force and the damping
force are equal �i.e., �Fi � = �Fd��.

Note that for systems that behave inelastically and for which
the frame remains elastic �i.e., �ya�u��yf�, the strain-hardening
ratio, 	, has a significant influence on the acceleration demand,

since Fs=Vy +	K1�u−�ya� in this region. Since Fs�Vy in sys-
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tems with small values of 	, a reduction in the hysteretic force
when viscous damping is added is not significant. On the other
hand, Fs may be significantly reduced in systems with large val-
ues of 	, when maximum displacement decreases by the addition
of viscous damping. For example, in a system with T=0.5 s,

=0.2, 	=0.05, �max=10 �Fig. 7�, the hysteretic force remains
almost constant �i.e., �Fs�0�, and the acceleration demand con-
sequently increases by about 60%, when 25% of extra viscous
damping is added. For the same system, but with 	=0.50 instead,
Fs is reduced by 40% when 25% of viscous damping is added
�i.e., �Fd� ��Fs��, and accordingly, the acceleration demand de-
creases by about 30%.

Also, it may be noted in Fig. 7 that for elastic systems �i.e.,
Fs=K1u�, the displacement and acceleration demands both de-
crease by increasing the viscous damping, since the decrease in
the hysteretic force is always larger than the increase in the vis-
cous damper force �i.e., �Fd� �Fs��. For example, in a system
with T=1.50 s, 
=1.0, 	=0.25, �max=2.5, the hysteretic force
reduces by 40% when 25% of viscous damping is added �i.e.,
�Fd� ��Fs��, and the acceleration demand accordingly decreases
by about 50%.

These results corroborate the fact that the addition of viscous
damping is effective in reducing the displacements and accelera-
tion demands of elastic or near-elastic �e.g., 	=0.5� systems, but
is less effective for nonlinear systems. However, metallic dampers
with elastic behavior are not effective, since they only provide
additional stiffness to reduce lateral displacements, which is
something that could be done just as well with conventional struc-
tural elements �Vargas and Bruneau 2006�.

Analysis in Frequency Domain

Results from the systems previously studied are analyzed in this
section in the frequency domain. Using the fast Fourier transform
�FFT� algorithm �Cooley and Tukey 1965�, response of the sys-
tems studied parametrically here were transformed from the time
domain to the frequency domain, in which inertial, viscous
damper, and hysteretic forces can be represented as rotational
vectors forming a closed polygon in the complex plane, as sche-
matically shown in Fig. 8 �also called Argand diagrams� �Clough
and Penzien 1993�. Fig. 8�a� shows a representation of the equa-
tion of motion �Eq. �9�� for a system with elastic behavior at a
particular time during the earthquake time history. Note that in-
creases in the viscous damper force result in substantial decreases
in the hysteretic and in the inertial forces �shown as dotted lines�.
On the other hand, in systems with inelastic behavior �Fig. 8�b��

Fig. 8. Schematic representation of inertial, viscous damper and
metallic damper forces: �a� elastic systems; �b� inelastic systems
an increase in the viscous damper force may result in a substantial
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increase in the inertial force along with a slight decrease in the
hysteretic force �shown again as dotted lines�.

Response of the systems presented in Fig. 7 was transformed
to the frequency domain and shown in Fig. 9. Every plot corre-
sponds to the maximum value of inertial force obtained during the
time history of response, along with the corresponding viscous
and hysteretic forces at that particular time. All the forces are
normalized with respect to the inertial force �i.e., inertial force is
plotted as an unitary vector, and viscous and hysteretic forces are
represented as fractions of the inertial force�. From Eq. �9� it may
be noted that the resultant of the hysteretic and damping forces is
equal and opposite to the inertial force, as is also shown in Fig. 9.

Note that for small viscous damping �i.e., 5%�, the inertial
force and the hysteretic force are almost equal. On the other
hand, for systems with large viscous damping �i.e., 30%�, the
inertial force is considerably greater than the hysteretic force.
This vectorial addition shows how a greater damping force can
lead to the acceleration increases described in the previous sec-
tion. Incidentally, this observation has been reported by some
practitioners that have considered using viscous dampers to retro-
fit buildings in selective case studies, and have noticed increases

Fig. 9. Complex plane representation of inertial force, Fi, viscous d
damping
in the floor accelerations if the structure remains inelastic after the
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retrofit but could not explain why �e.g., personal communication,
Dr. Chris Tokas, Manager, California Hospital Seismic Retrofit
Program, State of California Office of Statewide Health Planning
and Development�.

Conclusions

Seismic response of hybrid systems having metallic and viscous
dampers has been studied in this paper through parametric analy-
ses. It was found that increases in viscous damping reduce the
effectiveness of metallic dampers in terms of energy dissipation,
since the amplitude of motion �and thus ductility demand� is re-
duced. In some cases, when the amplitude of motion decreases to
the point where the system behave elastically, metallic dampers
only work to provide additional stiffness to the system, which
may be achieved by other conventional methods �e.g., steel braces
as opposed to special ductile devices�.

Although viscous dampers are known to decrease both dis-
placements and acceleration demands in structures with elastic

force, Fd, and metallic damper force, Fs, for 5 and 30% of viscous
amper
behavior, for structural systems where metallic dampers are de-
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signed to behave inelastically �i.e., �ya�u��yf�, the floor accel-
erations are likely to increase if viscous dampers are added in
parallel to metallic dampers, especially for systems with small
strain-hardening ratio �i.e., 	�0.25�. Therefore, adding such vis-
cous dampers in parallel with hysteretic dampers could, in some
instances, worsen the seismic performance of acceleration sensi-
tive equipment and nonstructural components. This observation
would also be true for buildings that have been retrofitted with
viscous dampers and whose original frame still behaves inelasti-
cally under major earthquakes. Argand diagrams in the frequency
domain are successfully used to explain these observations.
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